Teaching Scheme and Syllabus

For

Bachelor of Technology

In Mechanical Engineering

Minors in Mechanical Engineering

Department of Mechanical Engineering

Sardar Vallabhbhai National Institute of Technology

Minor in Mechanical Engineering

Sr.	Semester	Subject	Code	Schema	Credit	Notional hours		
No.						of Learning		
						(Approx.)		
1.	IV	Theory of Machine and	NAEN421	3-1-0	4	70		
		Machine Design	IVIEIVIZI					
2.	V	Thermal & Fluid Engineering	MEM32	3-1-0	4	70		
3.	VI	Manufacturing Processes	MEM33	3-1-0	4	70		
4.	VII	Industrial Engineering and		3-1-0	4	70		
		Management	111111144					

B.Tech. II (DoME) Semester – 4 THEORY OF MACHINE AND MACHINE DESIGN	Scheme	L	т	Ρ	Credit
(MINORS) MEM21		4	0	0	04

1	<u>Course Outcomes (COs):</u>		
At the	At the end of the course, students will be able to		
CO1	Understanding of various concepts related to machines and mechanisms.		
CO2	Analyse the kinematic requirements of various mechanism.		
CO3	Evaluate gears and gear trains for specific applications.		
CO4	Design the various types of joints and fasteners.		
CO5	Design the shafts and its components.		
CO6	Design procedures to gears and bearings.		

2.	Syllabus			
	INTRODUCTION	(15 Hours)		
	 Introduction to Machines and Mechanisms: Introduction, Mechanism and machine, Rigid and Resistant body, Link, Kinematic pair, Types of motion, Degrees of Freedom (Mobility) Classification of Kinematic pairs, Kinematic Chain, Linkage, Kinematic Inversion, Inversions of Slider-Crank Chain, Double Slider-Crank Chain. Cams: Introduction, Types of Cams, Types of Followers, Cam Terminology, Displacement Diagrams, Motions of the Follower, Drawing of Cam Profile 			
	GEARS AND FRICTION	(15 Hours)		
	 Gears: Different Types of Motion Transmitting Elements, Advantages and Disadvantages Types of Gears and Gear trains, Gear Terminology and classification. Friction: Introduction to Friction, Significance of Friction, its Merits and Demerits, Applicatio of Friction to Screw Jack, Brakes and Clutches etc. 			
	DESIGN JOINTS AND DESIGN POWER TRANSMISSION ELEMENTS	(30 Hours)		

Introduction: Types of Load, Design Process, Material Selection, Factor of Safety, Failure and Their Causes, Introduction to Corrosion (Design Aspect).

Design of Joints:

Introduction, Different types of Joints and Their Applications, Design of Bolts and Rivets joints, Design of Screw Joint, Design of Welded Joints (Efficiency & Strength).

Design of Power Transmission Elements:

Introduction, Stresses Induced in the Shaft Under Different Conditions, Selection of Keys, Power Transmitting Capacity of Flat & V Belt, Selection of Bearings, Power Rating of Spur and Helical Gears.

(Total Contact Time: = 60 Hours)

3.	Books Recommended
1	A. Ghosh and A. K. Mallik, Theory of Mechanisms and Machines, Affiliated East-West Press, 2008.
2	S. Singh, Theory of Machines, 2 nd Edition, Pearson Education India, 2013.
3	S. S. Rattan, Theory of Machines, Tata McGraw Hill Education Private Limited, 2007.
4	R. G. Budynas and K. Nisbett, Shigley's Mechanical Engineering Design, 11 th Edition, McGraw Hill, 2020.
5	V. B. Bhandari, Design of Machine Elements, 4 th Edition, Tata McGraw Hill, 2016.

B.Tech. III (DoME) Semester – 5 THERMAL & FLUID ENGINEERING (MINORS)	Scheme	L	Т	Ρ	Credit
MEM32		3	1	0	04

1	1. <u>Course Outcomes (COs):</u>			
At th	At the end of the course, students will be able to			
CO1	Relate the thermodynamic laws to engineering systems and processes.			
CO2	Apply the second law of thermodynamics.			
CO3	Apply concepts of fluid mechanics.			
CO4	Apply appropriate mode of heat transfer while analyzing engineering problems.			
CO5	Compare the different types of power cycles.			
CO6	Evaluate the different types of refrigeration systems.			

2.	Syllabus		
		(10 Hours)	
	Classical & statistical thermodynamics, Thermodynamic: system, proper processes, cycle & equilibrium, Zeroth law of thermodynamics, Concept of Worl Substance, Phase Diagrams, Mollier diagram, Ideal Gas Equation, Concept of law of thermodynamics for cycle & process, Statements of second law of the Carnot cycle and Concept of Entropy.	erties, states, k & Heat, Pure Enthalpy, First ermodynamics,	
	FLUID MECHANICS & MACHINES	(12 Hours)	
	Classification of fluid, Fluid properties, Fluid statics, Fluid kinematics, Fluid Boundary layer phenomenon, Hydraulic turbines and pumps	uid dynamics,	
	HEAT TRANSFER	(08 Hours)	
	Modes of heat transfer: conduction, convection and radiation; Heat exchanger: heat exchangers, fouling factors, LMTD, Effectiveness – NTU methods of design	basic types of	
	POWER CYCLES	(07 Hours)	
	Air standard cycles: Otto, Diesel and Dual Cycles, Fuel air cycles and Actual		

Rankine cycle, Improvement in Rankine cycle	
REFRIGERATION & AIR CONDITIONING	(8 Hours)
Reversed Carnot cycle, Aircraft refrigeration cycle, Simple vapor compression cy of vapor compression cycle, Simple vapor absorption refrigeration cycle, Psychr properties, Preparation of psychrometric charts, Psychrometric processes, Sum winter air conditioning system	vcle, Analysis ometric mer and
(Total Contact Tim	ie: = 45 Hours)

3.	Books Recommended
1	Y.A. Cengel and M.A. Boles, Thermodynamics, Tata McGraw Hill, 2017
2	White F. M., "Fluids Mechanics", McGraw-Hill Inc., 7th Ed., New York, 2010
3	Y. A. Cengel, A. J.Ghajar, Heat and Mass Transfer, McGraw Hill, 2017.
4	R. K. Rajput, Thermal Engineering, Laxmi Publications, 2017
5	C. P. Arora, Refrigeration and Air conditioning, Tata McGraw Hill, 2017.

B.Tech. III (DoME) Semester – 6 MANUFACTURING PROCESSES (MINORS)	Scheme	L	т	Ρ	Credit
MEM33		3	1	0	04

1	. <u>Course Outcomes (COs):</u>
At th	e end of the course, students will be able to
CO1	Classify and explain manufacturing processes.
CO2	Describe the working principles of various metal casting processes.
CO3	Explain the principles of material removal, bulk deformation of metals, and sheet metal operations.
CO4	Compare various joining processes and explain their defects & prevention.
CO5	Select relevant the manufacturing processes for a given workpieces to create desired feature.
CO6	Describe need of the heat treatment and surface modification processes.

2.	Syllabus		
	INTRODUCTION	(08 Hours)	
	Introduction to manufacturing, Fundamental approaches of manufacturing, manufacturing processes, Specific advantages and limitation, Materials in Selection of manufacturing processes, Application of manufacturing proc manufacturing processes on properties of metals. Introduction of com manufacturing systems, micro & nano-manufacturing, automation.	Classification of manufacturing, cesses, Effect of puter-integrated	
	METAL CASTING	(09 Hours)	
	Introduction of Metal Casting & Suitability, Steps of casting processes, Pattern allowan Sand Moulding, Core & Core Prints, Gating System, Cleaning of casting, Casting defect their prevention, Shell moulding, Investment and permanent mould casting.		
	METAL FORMING	(08 Hours)	
	Hot and cold working, Deformation processes and sheet metal operations.	<u>.</u>	

MATERIAL REMOVAL	(14 Hours)
Introduction to Machining, Mechanism of the metal cutting, Chip Formation Cutting tool technology: tool geometry, failure and tool life, tool materials, different conventional and nonconventional machining processes and equipm	, Types of chips; ; Introduction of nents.
JOINING OF METALS	(06 Hours)
Fundamentals of joining of metals, Joining processes; Weldability and welding	g defects.
(Total Contact T	ime: = 45 Hours)

3.	Books Recommended
1	S. K. Hajra Choudhury, Element of Workshop Technology; Vol. 2, 14 th Edition, Media
	Promoters and publishers Pvt., 2010.
2	S. Kalpakjian and S. R. Illinois, Manufacturing Engineering and Technology; 6 th Edition, Pearson
	Prentice Hall, New Jersey, 2010.
3	M.P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems;
	3 rd Edition, Wiley India Pvt. Ltd., New Delhi, 2012.
4	P. N. Rao, Manufacturing Technology-I, 4th Edition, Mc Graw Hill Education, 2013.
5	P. N. Rao, Manufacturing Technology-II, 4th Edition, Mc Graw Hill Education, 2013.
6	Ernest Paul DeGarmo, J. Temple Black, Ronald A. Kohser, Materials and Processes in
	Manufacturing, 8 th Edition, Prentice Hall India, 2007.
7	V. K. Jain, Advanced machining processes; Allied publishers, 2009.

B.Tech. IV (DoME) Semester – 7 INDUSTRIAL ENGINEERING AND MANAGEMENT	Scheme	L	Т	Ρ	Credit
(MINORS) MEM44		3	1	0	04

Γ

1	. <u>Course Outcomes (COs):</u>	
At the end of the course, students will be able to		
CO1	Demonstrate and apply selected industrial engineering techniques for enhancing productivity in an organization.	
CO2	Apply the various forecasting and project management techniques.	
CO3	Apply the concept of break-even analysis, inventory control and resource utilization using queuing theory.	
CO4	Apply principles of work study and ergonomics for design of work systems.	
CO5	Formulate mathematical models for optimal solution of industrial problems using linear programming approach.	
CO6	Understand functions of a product/service and apply Value engineering and Reliability in real industrial problems.	

2.	Syllabus	
	OVERVIEW OF INDUSTRIAL ENGINEERING	(10 hours)
	Types of production systems, concept of productivity, productivity me manufacturing and service organizations, operations strategies, liability and pro	asurement in ocess design.
	Facility location and layout: Factors affecting facility location; principle of plant types of plant layout; computer aided layout design techniques; assembly l materials handling principles, types of material handling systems, metho- planning, steps in process selection, production equipment and tooling se technology, and flexible manufacturing.	layout design, line balancing; ds of process lection, group
	PRODUCTION PLANNING & CONTROL AND PROJECT MANAGEMENT	(08 hours)
	Forecasting techniques—causal and time series models, moving average smoothing, trend and seasonality; aggregate production planning; mast scheduling; materials requirement planning (MRP) and MRP-II; routing, so priority dispatching, concept of JIT manufacturing system. Project Manage network analysis, CPM, PERT and Project crashing.	e, exponential er production cheduling and ement: Project
	ENGINEERING ECONOMY AND INVENTORY MANAGEMENT	(08 hours)
	Definition and meaning of management, Methods of depreciation; break- techniques for evaluation of capital investments, financial statements, time- resource levelling; Inventory functions, costs, classifications, deterministic inve	even analysis, cost trade-off, entory models,

٦

perpetual and periodic inventory control systems, ABC analysis, and VED analysis. Queuing Theory: Basis of Queuing theory, elements of queuing theory, Operating characteristics of a queuing system, Classification of Queuing models.

WORK SYSTEM DESIGN AND PRODUCT DESIGN & DEVELOPMENT

Work System Design: Taylor's scientific management, Gilbreths's contributions; work study: method study, micro-motion study, principles of motion economy; work measurement-time study, work sampling, standard data, Predetermined motion time system (PMTS); ergonomics; job evaluation, merit rating, incentive schemes, and wage administration. Product Design and Development: Principles of product design, tolerance design; quality and cost considerations; product life cycle; standardization, simplification, diversification, value engineering and analysis, and concurrent engineering.

OPERATIONAL ANALYSIS

(12 hours)

Operational Analysis: Formulation of LPP, Graphical solution of LPP, Simplex Method, Sensitivity Analysis, degeneracy and unbound solutions. Transportation and assignment models; Optimality test: the stepping stone method and MODI method, simulation.

(Total Contact Time: = 45 Hours)

3.	Books Recommended
1	Martand T Telsang, Industrial Engineering and Production Management, 3 rd Edition, S. Chand Publishing, 2018.
2	M. Mahajan, Industrial Engineering and Production Management, Dhanpat Rai & Co. (P) Limited, 2015.
3	Ravi Shankar, Industrial Engineering and Management, 2 nd Edition, Galgotia Publications Pvt Ltd., 2000.
4	B.E. Adam and R.J. Ebert, Production and Operations Management, 5 th Edition, Prentice-Hall, 1992.
5	A.V. Chitale and R. C. Gupta, Product Design and Manufacturing, 5 th Edition, PHI, 2011.
6	J. K. Sharma, Operations Research Theory & Applications, 4 th edition, Macmillan India Ltd, 2017.
7	J. L. Riggs, Production Systems Analysis and Control, 4 th Edition, John Wiley & Sons, 1987.
8	P. K. Gupta and D. S. Hira, Operations Research, 11 th Edition, S. Chand & Co., 2015.
9	A.M. Natarajan, P. Balasubramani, A. Tamilarasi, Operations Research, 2 nd Edition, Pearson Education India, 2014.
10	Buffa, Modern Production/operations Management, Wiley Eastern, New York, 1999.
11	Muhlemann Alan, Oakland John and Lockyer Keith, Production and Operations Management, Macmillan India Publications Ltd., 2001.
12	Adam and Ebert, Production and Operation Management, 5 th Edition, Pearson Education Asia, 2003.